If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-40=0
a = 35; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·35·(-40)
Δ = 5600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5600}=\sqrt{400*14}=\sqrt{400}*\sqrt{14}=20\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{14}}{2*35}=\frac{0-20\sqrt{14}}{70} =-\frac{20\sqrt{14}}{70} =-\frac{2\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{14}}{2*35}=\frac{0+20\sqrt{14}}{70} =\frac{20\sqrt{14}}{70} =\frac{2\sqrt{14}}{7} $
| 3805-900y=2005 | | 5x+72=8x | | 7(2w+3)+7(w-2)=49 | | 715/5+27=x | | 4(7m-2)=-36 | | 6/w=12/18 | | 15+5w+7-w+8w=82 | | Y=x+150 | | -47=9-7p | | 3x^2+4x=-14 | | -47=-9k+4+4k+9 | | x+4÷6=7÷3+x-3÷4 | | 4*(3y)=72 | | 1x+3x-56=100 | | -3(7p+6)-2(2-20p)=3(4+6p) | | 5(x+7)-7x=25 | | 0.4(-y)+42.6=113 | | (2x-1)^(2/3)=9 | | X+3/7-2x-5/3=3x-5/5 | | 30(x+8÷10)=30(2÷5+×-2÷6) | | 26+g=76.90 | | 0.03x+0.14(x+9000)=1770 | | 19.88+4.7t=-20-0.7t-17.9 | | 1/9*y=1 | | 12+16y+24=7y-16 | | 0.65x+0.05(18-x)=0.10(105) | | -3.1-3.1k=-6.2k | | 1/9*y=y | | 7/3x+4=2/(x-2) | | -16+2f+19=20-15f | | x+8÷10=2÷5+x-2÷6 | | -9+12k=11k |